Watching nuclei move: Insights into how kinesin-1 and dynein function together.

نویسنده

  • Daniel A Starr
چکیده

Moving nuclei to specific intracellular locations is central to many cell and developmental processes. However, the molecular mechanisms of nuclear migration are poorly understood. We took advantage of the ability to film nuclear migration events in Caenorhabditis elegans embryos to gain insights into the mechanisms of nuclear migration. Mutations in unc-83 blocked the initiation of nuclear migration. UNC-83 recruits kinesin-1 and dynein to the nuclear envelope. Live imaging of mutants showed that kinein-1 provides the major force to move nuclei. Dynein is responsible to move nuclei backwards or to mediate nuclear rolling to by pass cellular roadblocks that impede efficient migration. Live imaging was also used to analyze the microtubule network, which is highly polarized and dynamic. This detailed mechanism of nuclear migration may be applicable to nuclear migration in other systems and for the movement of other large cellular cargo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinesin-1 and dynein at the nuclear envelope mediate the bidirectional migrations of nuclei

Kinesin-1 and dynein are recruited to the nuclear envelope by the Caenorhabditis elegans klarsicht/ANC-1/Syne homology (KASH) protein UNC-83 to move nuclei. The mechanisms of how these motors are coordinated to mediate nuclear migration are unknown. Time-lapse differential interference contrast and fluorescence imaging of embryonic hypodermal nuclear migration events were used to characterize t...

متن کامل

Translocating myonuclei have distinct leading and lagging edges that require kinesin and dynein.

Nuclei are precisely positioned within all cells, and mispositioned nuclei are a hallmark of many muscle diseases. Myonuclear positioning is dependent on Kinesin and Dynein, but interactions between these motor proteins and their mechanisms of action are unclear. We find that in developing Drosophila muscles, Dynein and Kinesin work together to move nuclei in a single direction by two separate ...

متن کامل

Molecular Motors: Strategies to Get Along

The majority of active transport in the cell is driven by three classes of molecular motors: the kinesin and dynein families that move toward the plus-end and minus-end of microtubules, respectively, and the unconventional myosin motors that move along actin filaments. Each class of motor has different properties, but in the cell they often function together. In this review we summarize what is...

متن کامل

Opposing microtubule motors drive robust nuclear dynamics in developing muscle cells.

Dynamic interactions with the cytoskeleton drive the movement and positioning of nuclei in many cell types. During muscle cell development, myoblasts fuse to form syncytial myofibers with nuclei positioned regularly along the length of the cell. Nuclear translocation in developing myotubes requires microtubules, but the mechanisms involved have not been elucidated. We find that as nuclei active...

متن کامل

Kinesin and dynein mutants provide novel insights into the roles of vesicle traffic during cell morphogenesis in Neurospora

BACKGROUND Kinesin and cytoplasmic dynein are force-generating molecules that move in opposite directions along microtubules. They have been implicated in the directed transport of a wide variety of cellular organelles, but it is unclear whether they have overlapping or largely independent functions. RESULTS We analyzed organelle transport in kinesin and dynein single mutants, and in a kinesi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioarchitecture

دوره 1 1  شماره 

صفحات  -

تاریخ انتشار 2011